AP Calculus BC

Unit 3 – Advanced Differentiation Techniques

Find -	$\frac{dy}{dx}$ for each of the following.		
1.	$y = x^2 \ln x$	2.	$y = \sin(2x) + 2^{\sin x}$
3.	$y = e^{2x}$	4.	$g(x) = \log_9 \left(6x^4 + 3 \right)^5$
5.	$y = 5^{3x}$	6.	$f(x) = 5^{x^3 - 7}$
7.	$f(x) = \ln\left(4x^3 + \sec x\right)$	8.	$y = \sin(\ln x)$
9.	$y = (x^2 + 1)^3 (4x + 3)^5$		10. $f(x) = e^{\tan x}$
11.	$y = x^5 3^{-3x}$	12.	$g(x) = \sec\left(5^{2x}\right) + \ln\sqrt{4x+2}$
13.	Write an equation for the tangent and normal lines	to $y = $	xe^{-x} when $x=1$.

14. At what point on the graph of $y = 4^x + 3$ is the tangent line parallel to the line y = 2x - 9?

1	Use implicit differentiation to find $\frac{dy}{dx}$ for $x = \sec y$.
2	For $2x^2 - y^2 = 1$, find: a) $\frac{dy}{dx}$ b) $\frac{d^2y}{dx^2}$ and simplify in terms of x and y.
3	For $y^2 = 9x^2 + 4x$, find: a) $\frac{dy}{dx}$ b) $\frac{d^2y}{dx^2}$ and simplify in terms of x and y.
4	Use the curve $x^2 - 4xy + y^2 = -6$. Show that $\frac{dy}{dx} = \frac{4y - 2x}{2y - 4x}$.
5	For $x^2 + y^2 = 26$, determine the equations of the tangent lines when $x = -1$.
6	Find the slope of the tangent line to the curve $(x-3)^2 + (y-4)^2 = 5$ at the point (5,5).
7	Find the equations of the lines that are tangent and normal to the curve $x^2y^2 = 16$ at $(-1,4)$.

1. Consider the curve defined $xy^2 - 2x^3 = 2$ for $y \ge 0$. a) Show that $\frac{dy}{dx} = \frac{6x^2 - y^2}{2xy}$. Write an equation for the line tangent to the curve at the point (1,2). b) Find the *x*-coordinate of the point *P* at which the line tangent to the curve at *P* is horizontal. c) Find the value of $\frac{d^2 y}{dx^2}$ at the point (1,2). d) 2. Consider the curve defined by $y^2 - x^2 y = 6$ for y > 0. a) Show that $\frac{dy}{dx} = \frac{2xy}{2y - x^2}$ Write an equation for the line tangent to the curve at the point (1,3). b) Show that there is a point P with x-coordinate 0 at which the line tangent to the curve P is horizontal. Find the c) y-coordinate of point P. d) Find the value of $\frac{d^2 y}{dx^2}$ at the point *P* found in part (c).

Find the derivatives

$1) y = \sin^{-1}(5x)$	2) $y = \csc^{-1}(4x^5)$	3) $y = \arctan(e^{2x})$
4) $y = \cot^{-1}(3x^2 - 1)$	5) $y = \arcsin\left(\frac{1}{x}\right)$	6) $y = \operatorname{arcsec}(x^3)$

Find the equation of the tangent line to the curve at the given value of *x*.

7) $y = \arcsin x$; $x = \frac{\sqrt{2}}{2}$	8) $f(x) = \cos^{-1}(4x); x = \frac{\sqrt{3}}{8}$
9) $f(x) = \arctan x; x = 1$	10) $f(x) = \sin^{-1}(5x); x = -\frac{\sqrt{3}}{10}$

11) Let
$$g(x) = (\arccos x^2)^5$$
, then $g'(x) =$
12) If $\lim_{x \to a} \frac{\arccos x - \arccos a}{x - a} = 3$, find the value of a .
13) If $\arctan y = \ln x$, find $\frac{dy}{dx}$.
14) If $y = e^x (\sec^{-1} x)$, find $\frac{dy}{dx}$.
15) If $y^2 - 8y + x^2 = 5$, find $\frac{dy}{dx}$.

- 1. Let f be the function defined by $f(x) = x^3 + 7x + 2$. If $g(x) = f^{-1}(x)$, evaluate the following:
 - a) f(1)
 - b) f'(1)
 - c) g(10)
 - d) g'(10)?
- 2) Let f be the function defined by $f(x) = x^5 + 3x^3 + 7x + 2$. If $g(x) = f^{-1}(x)$ and f(1) = 13, what is the value of g'(13)?
- 3) Let f be the function defined by $f(x) = 7(x+1)^3 + \sin^3 x$. If $g(x) = f^{-1}(x)$ and f(0) = 7, what is the value of g'(7)?
- 4) Let f be the function defined by $f(x) = x^7 + 2x + 9$. If $g(x) = f^{-1}(x)$, find g'(12).
- 5) Let f be the function defined by $f(x) = x^3 + x 8$. If $g(x) = f^{-1}(x)$, find g'(-6).
- 6) The functions f and g are differentiable. Given that $g(x) = f^{-1}(x)$, f(1) = 3, and f'(1) = -5, find g'(3)
- 7) The functions f and g are differentiable. Given that $g(x) = f^{-1}(x)$, f(2) = 4, f(4) = -6, f'(2) = 7, and f'(4) = 11, find g'(4).
- 8) Find $\frac{d^2 y}{dx^2}$ for $y = \arcsin(3x+2)$
- 9) Given the function $y = \arctan(\cos x)$. Find the value of $f''\left(\frac{\pi}{3}\right)$.

Find the derivative of each function.

1) $f(x) = 2\sin x \cos x$	2) $s = \cot \frac{2}{t}$	3) $r = \sec(1+3\theta)$	4) $y = \ln \sqrt{x}$
$5) y = e^{(1+\ln x)}$	6) $r = \log_2(\theta^2)$	$7) y = x^{\ln x}$	$8) f(x) = (\sin x)^x$
9) $f(x) = x \ln x$	10) $xy + 2x + 3y = 1$	$11) y^2 = \frac{x}{x+1}$	12) $\sqrt{xy} = 1$

13
 Find
$$\frac{d^2 y}{dx^2}$$
 for $x^3 + y^3 = 1$.

 14
 Find $\frac{d^2 y}{dx^2}$ for $f(x) = xe^{\sin x}$.

 15
 Find the equation for the (a) tangent and (b) normal line to the graph of $f(x) = \sqrt{x^2 - 2x}$ when $x = 3$.

 16
 Find the equation for the (a) tangent and (b) normal line to the graph of $x + \sqrt{xy} = 6$ at $(4,1)$.

 17
 Working with Numerical Values Suppose that a function f and its first derivative have the following values at $x = 0$ and $x = 1$.
 a) $\sqrt{x}f(x), x = 1$

 17
 $\frac{x f(x) f'(x)}{0 9 - 2}$
 b) $f(1-5\tan x), x = 0$

 18
 Find the first derivative of the following combinations at the given value of x.
 c) $\frac{f(x)}{2 + \cos x}, x = 0$

 $y = e^{-4x}$

2.

I. Differentiate 1. $y = \ln(5x^4)$

3.
$$y = 7^{3x^2 + 4x}$$
 4. $f(x) = \sin x \cos x$

5.
$$y = x^{5x}$$

6. $y = (x^3 + 2)^4 (\cot x - 2x)^5$

7.
$$y = \sin(3x - 4)$$

8. $w(x) = \tan^2(\ln(1 + x))$

9.
$$h(x) = \ln\left(\sec\sqrt{x}\right)$$
 10. $y = \arccos\left(5x^3 + 4x\right)$

11.
$$y = \cos(\ln 3x)$$
 12. $f(x) = \tan^3(4x^6 - 2x)$

13.
$$f(x) = \csc(x^6)e^{-5x}$$
 14. $y = \ln(x^2 + 5x)$

II. Applications

15. Given: $y = \sin^2 x$. Write the equations of the tangent and normal lines to the graph where $x = \frac{\pi}{6}$. 16. Given: $f(x) = \sin^2(x)$ and $g(x) = x^2 - 5$. Let K(x) = g(f(x)).

a.
$$K'(x)$$

b. Find $K'\left(\frac{\pi}{4}\right)$.

17. Given: $x^2 + y^3 = 1$ find $\frac{d^2 y}{dx^2}$ at (3, -2).

A graphing calculator is required for this question.

x	-3	0	3	4
f(x)	5	-1	2	7
f'(x)	-2	4	0	1

- 1. The table above gives values of a twice-differential function f and its first derivative f' for selected values of x. Let g be the function defined by $g(x) = f(2x - x^2)$.
 - (a) What is the value of g'(-1)?
 - (b) It is known that g''(0) = 0. What is the value of f''(0)?
 - (c) Is there a value c, for 0 < c < 3, such that g(c) = 2? Justify your answer.
 - (d) Let *h* be the function with the first derivative given by $h'(x) = 4xe^x$. At what value of *x* in the interval $0 \le x \le 4$ does the instantaneous rate of change of *h* equal the average rate of change of *f* over the interval $0 \le x \le 4$?

No calculator is allowed for this question.

- 2. Consider the curve given by the equation $2xy + y^2 = 8$ for y > 0.
 - (a) Show that $\frac{dy}{dx} = \frac{-y}{x+y}$.
 - (b) Write an equation for the line tangent to the curve at the point (1,2).

(c) Evaluate
$$\frac{d^2 y}{dx^2}$$
 at the point (1,2).

(d) The points (1,2) and $(\frac{7}{2},1)$ are on the curve. Find the value of $(y^{-1})'(1)$.

No calculator is allowed for this question.

x	-3	2	3	8
f(x)	-9	4	2	6
f'(x)	$-\frac{7}{2}$	$\frac{3}{2}$	$-\frac{2}{5}$	$\frac{1}{3}$

- 3. The table above gives values of a differentiable function f and its derivative for selected values of x.
 - (a) Let g be the function defined by $g(x) = \frac{\ln x}{f(x^3)}$. Find g'(2).
 - (b) Let *h* be the function defined by f(f(-3x)). Find h'(-1).
 - (c) Let *k* be the function defined by $k(x) = f(x) \cdot \arctan\left(\frac{x}{3}\right)$. Find k'(-3).